Evaluating neural tissue regeneration by ANN based classification of MNG signals

نویسندگان

  • M. Giacomini
  • F. Raffo
  • X. Smit
  • B. S. de Kool
  • J. W. Neck
  • S.E.R. Hovius
  • C. Ruggiero
چکیده

One of the major challenges of microsurgery is nerve regeneration across lesions. In this respect it is very important to assess whether a peripheral nerve is reconstructed and how much of its initial function has been restored. Several methods are available for this purpose: function tests, histological techniques, neurophysiologic tests. The present paper addresses magnetoneurography (MNG), a neurophysiology test which is very suitable because of its high sensitivity features. This technique has been applied to animal models with a strictly controlled procedure to obtain a set of highly comparable and replicable results. The aim of this study is to assess whether the time interval between surgery and MNG measurement is a parameter according to which the MNG signals can be classified obtaining insights into the state of the regeneration process. The classification has been performed using two types of supervised artificial neural networks (ANN). Key-Words: Nerve repair, Signal processing, Backpropagation Neural Networks, Supervised Classification

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks

A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here.  The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...

متن کامل

Application of statistical techniques and artificial neural network to estimate force from sEMG signals

This paper presents an application of design of experiments techniques to determine the optimized parameters of artificial neural network (ANN), which are used to estimate force from Electromyogram (sEMG) signals. The accuracy of ANN model is highly dependent on the network parameters settings. There are plenty of algorithms that are used to obtain the optimal ANN setting. However, to the best ...

متن کامل

طراحی و آموزش شبکه‏ های عصبی مصنوعی به وسیله استراتژی تکاملی با جمعیت‏ های موازی

Application of artificial neural networks (ANN) in areas such as classification of images and audio signals shows the ability of this artificial intelligence technique for solving practical problems. Construction and training of ANNs is usually a time-consuming and hard process. A suitable neural model must be able to learn the training data and also have the generalization ability. In this pap...

متن کامل

A Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis

Background: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artificial neural networks (ANNs) can significantly improve the identification and classification processes of MS clinical datasets.Objective: We classified patients with relapsing-r...

متن کامل

Intelligent Health Evaluation Method of Slewing Bearing Adopting Multiple Types of Signals from Monitoring System

Slewing bearing, which is widely applied in tank, excavator and wind turbine, is a critical component of rotational machine. Standard procedure for bearing life calculation and condition assessment was established in general rolling bearings, nevertheless, relatively less literatures, in regard to the health condition assessment of slewing bearing, were published in past. Real time health condi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004